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ABSTRACT: The present study addresses an application of the Mooney-Rivlin and Blatz-Ko material models in stability analysis of shell
structures. These models are suitable for large deformations as well as finite rotations. The constitutive relations are implemented in the
finite element software ABAQUS/Standard 6.14. To this end, UHYPER user subroutine is employed, which is dedicated for isotropic
models. The procedure allows to solve a boundary value problem involving either shell or spatial finite elements. Solutions of presented
exemplary problems are obtained on the basis of the Riks algorithm. In order to compare results, 3D and 2D finite elements models for
each one are considered. Moreover, calculations are performed in the case of widely used “standard nonlinear analysis”, which is not
consistent with a formulation based on large strains hyperelasticity.
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1. INTRODUCTION

The present study addresses an application of the theory of
hyperelasticity (Ref.1, 2) and finite element software ABAQUS/
Standard 6.14 (Ref. 3, 4) in stability analysis of shell structures (Ref. 5-
8). Three constitutive models of isotropic incompressible (model MR,
Ref. 2) and compressible nonlinear elastic materials (model NL (Ref. 2)
and model BK (Ref. 9)) are used (Ref. 1, 2). MR and NL models are
available in ABAQUS’s material models library (Ref. 3,4). One of the
objective of this paper is the numerical implementation of the BK model
in ABAQUS/Standard 6.14 finite element program (Ref. 3,4). The
program has interfaces that allow the user to implement their own
material models. In the special case of the hyperelastic isotropic
materials it is required only to write a Fortran code of the stored energy
function with its derivatives with respect to the strain invariants in the
form of UHYPER subroutine.

2. LARGE STRAINS HYPERELASTICITY
An elastic material is called hyperelastic, cf. (Ref. 1), if there exists a
stored energy function W (F), (F e Lin*,dimLin* =9) , such that

oW (F)
= 1
S==&F @
where S is the first Piola-Kirchhoff stress tensor and F defines a
“deformation  gradient” as F=09y(X,t)/6X. The function

x(X,t) defines an actual configuration of the body with respect to an
initial one, i.e. x = y(X;). Since J = detF >0, the mapping y is

oriented-preserving and locally invertible. The polar decomposition
states F = RU = VR , which means that any F can be multiplicatively

decomposed into a rotation tensor R € SO(3) (Ref. 1) and so called the

right U=vF' F=JCor the left V=+FF =B stretch tensor
(Ref. 1), (U,V eSym*,dimSym* =6) .

In order to avoid interpenetration of matter, it is necessary to put some
restrictions on W (F) , see [1,2]:

W(F) >+ asd —»0", W(F) >+ as|F| 0. @

We make the assumption that stored-energy function is isotropic, i.e.

W (F) =W (C) =W (B) =W(I1,.1,), ®)
where |, =trC=trB, |,=trcof C=trcofB and

invariants of each of the left and right Cauchy-Green deformation
tensors C and B (Ref. 1). Then, there exists a solution for a wide class
of boundary values problems associated with hyperelastic model when

W has the form W(F) =W (F,cof F, det F) for some convex W .

I,=J% are the

Such functions are said to be polyconvex, cf. (Ref. 1). We emphasize
that F,cof F,det F are connected with the deformation of lines, surface

and volume of the body, respectively.
In the case of incompressibility, i.e. detF=1, W(T:) is polyconvex if

there exists an extension of the function to convex one W (F,cofF)
with respect to F and cof F , cf. (Ref. 1), such that W (F) =W (F,cofF)
(F=07"F).

Since S is non-symmetric, it is convenient to introduce the second
Piola-Kirchhoff stress tensor
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The relationship between the Cauchy stress tensor o, the first and

second Piola-Kirchhoff ones, namely Jo=SF' =FTF', cf. (Ref. 1,
2), implies a constitutive relation in the spatial description such that

=27 5|(38) =§(ﬁ,l+ﬂzB+,ﬁaBz),
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The Kirchhoff stress tensor T =Jo (Ref. 2, 6) is work conjugated to

the symmetric rate of deformation tensor D = sym(l':F'l) with respect
to the initial volume so that (Ref. 1)

W=Js-D=1t-D=S-F=T-E, (6)

where E = (C - I)/ 2 denotes the Lagrangian strain tensor.

In order to implement a hyperelastic material model using UMAT (Ref.
3, 4), corresponding constructive equations needs to define in a rate
form. To do so, it is convenient to define a symmetric fourth-order
tensor as

aZaw(E)\

)
OE®OE|__ ‘ ™

aC®oC|

c=C’

which is known as the material (Lagrangian) elasticity tensor, cf. (Ref.
6). It is conjugated to the second Piola-Kirchhoff stress tensor
as T =CE. Since we are interested in a spatial description, the push
forward is applied to give the Eulerian elasticity tensor (Ref. 6). Finally,
the Zaremba- Jaumann rate of the Kirchhoff stress is given by (Ref. 6)

=Dr+ FIF 1D =(I07+ 01+ E).D=CD. @®)

3. MATERIAL MODELS

3.1 Constitutive relations

In the case of “standard nonlinear analysis™ of elastic structures (option
NLGEOM) in the finite element software ABAQUS/Standard (Ref. 3,4)
the following constitutive relationships is used (model NL):

6=A(INJ)1+2unV, 9)

where 4 and u are Lamé elastic constants. It is worth noting that the
NL model does not describe hyperelastic behavior of materials which
leads to unrealistic results of numerical simulations in the construction
areas where significant shear occurs (Ref. 2). Therefore, two
hyperelastic models are used in this work. In the case of compressible
materials, the model Blatz-Ko (BL) (Ref. 9) is used, whereas for
incompressible materials, the Mooney-Rivlin (MR) (Ref. 1, 2) model is
used.

The stored energy function of BL model is defined by

W:C—bb —3+1(J‘Za—) N
211 a
(10)
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where c=z,a —— and be(0,1].
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If J=1, then from Eq. (10) the well know Mooney-Rivlin energy
function is recovered, cf. (Ref. 2). MR and NL models are available in
ABAQUS’s material models library.

3.2 UHYPER user subroutine
The ABAQUS /Standard FEM software offers possibilities to implement
our own material model, see Ref. 4, 10, 11.
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Fig. 1 Components of the Cauchy stress tensor — BK model (v = 0.3)
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Fig. 2 Components of the Cauchy stress tensor — BK model (v = 0.49)

One way is to employ user subroutine UHYPER, which can be used to
define an isotropic model. It requires that the stored-energy function and
its derivatives are defined with respect to the invariants of the form

w=w(B) U(l.T.3),
o, (11)
I =trB, |2=§(|

1 —trB ) J =detF,

with B = FF' .

The implementation of the Blatz-Ko (BK) model is verified in simple
tests with homogeneous deformations using 3D and 2D elements, as
well. The results are compared with the values obtained on the basis of
analytical formulas. Plots of the Cauchy stress tensor components and
corresponding results obtained on the basis of the UHYPER subroutine
in the case of uniaxial deformation are presented in Fig.1 and Fig.2

4. EXAMPLES
As an exemplary boundary value problem a thin-walled circular tube
with characteristic dimensions: height h=10r, internal radius

r, = 0.995r, external radius r, =1.005r with r =1[m] under axial

compression is considered. A circular cutout located in the central part
of the element is introduced to induce relatively large deformations
(Ref. 10, 12). In order to compare results, two numerical models are
built using respectively: solid elements (3 elements by thickness) of type
C3D8R and shell elements of type S4R with linear interpolation
functions, see Ref. 4. The loading is realized by displacement control.

Thus, following boundary conditions are applied: u; =u, =u; =0 at

one end and u; =u, =0, u; =-2r at the other one according to the

coordinate system as in Fig. 3.Solutions are obtained on the basis of the
Riks algorithm known from efficiency of solving these types of
problems.

LIGHTWEIGHT STRUCTURES IN CIVIL ENGINEERING - CONTEMPORARY PROBLEMS - XXIV LSCE 2018



Fig. 3 Finite element mesh and cross section of the tube

The Fig. 4 presents plots of averaged stress & at the loaded end of the
tube as a function of displacement for the incompressible Mooney-
Rivlin model. Final deformations of the body corresponding to marked
points on equilibrium paths are shown in the figure.
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Fig. 4 Plots of averaged stress - MR model with = 0.9

The main difference between these two results is a range of the
displacement load obtained during the process. In the case of the shell

model, computations are carried out up to u; = -0.13r, while for the

solid model the extreme displacement value is u; =~ -0.04r. As

expected the second one occurs stiffer. Even though hybrid formulation
with reduced integration is applied, a volumetric locking evidently
appears, cf. (Ref. 1-3). In both cases, the local form of buckling is
observed, followed by a very rapid reduction of the stiffness of the tube.
Values of parameters v = 0.3,0 = 0.9 are more accurate for models of

metallic materials. In the case, numerical tasks are significantly worse
posed and solver fails after reaching critical point, see Fig.6 and 8.
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Fig. 5 Plots of averaged stress - NL model with v = 0.49,6 = 0.9
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Fig. 6 Plots of averaged stress - BK model with v =0.3,0 = 0.9

Similarly to the MR, in the case of BK and NL compressible models
values of critical stresses are higher for solid elements. Difference of
these values, see Fig. 5, for NL model is unacceptable. It shows that the
solution is very sensitive to values of initial parameters of the Riks
procedure. The model is not consistent with a formulation based on
large strains hyperelasticity and certainly should not be used in this
context.

—e— NL(v=049) --m- BK(v=049) --#- MR

us/r

Fig. 7 Comparison of NL, BK and MR materials — shell elements

The NL and BK models with v =0.49,60 = 0.9 represents an almost

incompressible material. As shown in Fig. 7, obtained values of critical
stresses are very similar in the case of shell elements. Ranges of the
displacement load do not differ significantly for NL and MR models. In
all cases, the local form of buckling is observed, followed by a very
rapid reduction of the stiffness of the tube. Final deformations are
shown in the Fig. 9-11 for these three cases.

—e— NL(v=03) --m- BK(v=0.3)

us/t
Fig. 8 Comparison of NL and BK materials — shell elements, v = 0.49
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Fig. 9 Final configuration of the tube — NL material — shell
elements, v = 0.49,6 = 0.9

Fig. 10 Final configuration of the tube — BK material — shell elements,
v=049,6=09

Fig. 11 Final configuration of the tube — MR material — shell elements,
=09

5. CONCLUSIONS

Briefly presented results of application of the Mooney-Rivlin and Blatz-
Ko material models in simple stability problem show that numerical
condition of the task is highly sensitive to value of the Poisson’s ratio.
Ranges of obtained displacements in tasks with o =0.49 are
significantly smaller then these obtained with v = 0.3 for both NL and
BK models. Thus, in the second case practically no results are obtained
for a post-critical behavior. On the other hand, an influence of a finite
element mesh quality on the solution is not investigated in the paper.
Due to significant local deformations, a minimization of error related to
the mesh would probably lead to performance a greater range of the
displacement load. Special consideration should be given to finite
elements type though. Results in a post-critical range vary significantly,
especially for the NL model. Difference of critical stresses values is
unacceptable. It shows that the solution is very sensitive to values of
initial parameters of the Riks procedure in the case. The model is not
consistent with a formulation based on large strains hyperelasticity and
certainly should not be used to analyse post-critical behaviour.
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APPENDIX
UHYPER user subroutine for the Blatz-Ko model, cf. (Ref. 11) (the

subroutine is updated according to requirements of ABAQUS ver. 6.14).

SUBROUTINE UHYPER (BI1,BI2,AJ,U,UIl,UI2,UI3,TEMP,
NOEL, CMNAME, INCMPFLAG, NUMSTATEV, STATEV, NUMFIELD, FIELDV,
FIELDVINC, NUMPROPS, PROPS)

INCLUDE ’ABA PARAM.INC’

CHARACTER*80 CMNAME

DIMENSION UI1 (3),UI2(6),UI3(6)

PARAMETER (ZERO=0.0D0)
c general form of compressible Blatz-Ko material
c=1.E06
a=1./4.
b=1./2.
cb =c*b
cb2 =cb/2.
cbm =(1. -b)*c
cbm2=cbm/2
robl =AJ**0.3333333333333333
rob2 = robl*robl
rob3 = rob2*rob2
rob4 = rob3*robl
rob5 = rob3*rob3
rob39= rob3*9
ar = 2.%a
a2m = -1. +ar
a2 = 1. +ar
aj2a = AJ**ar
aj2am = aj2a/AJ

ajm2a = 1./aj2a
ajm2am = ajm2a/AJ

ajk = AJ*AJ
C
U=cb2* (-3. + rob2*BIl + (-1l. + ajm2a)/a)- cbm2* (-3.
+BI2/rob2 + (-1. + aj2a)/a)
C
UI1l(1)=rob2*cb2
UIl(2)=cbm2/rob2
UI1(3)=2.* (cb2*BIl/robl-2.*cb*ajm2am-
cbm2*BI2/rob4+2.*cbm*aj2am) /3.
UI2(1)=ZERO
UI2(2)=ZERO
UI2(5)=cb/(3.*robl)
UI2(6)=-cbm/ (3.*robd)
UI3(1)=ZERO
UI3(2)=ZERO
UI2(3)=cbm2* (10.*BI2/(9.*rob5)+
+2.*a2m*aj2am/AJ) +
cb2* (-2.*BI1/rob39+2.*a2*ajm2am/AJ)
UI2(4)=ZERO
UI3(3)=ZERO
UI3(4)=-cb/rob39
UI3(5)=5.*cbm/ (rob39*rob3)
UI3(6)=cb2* (8.*BI1/(27.*rob3*AJ) -
4.*(1l+a)*a2*ajm2am/ajk) +
cbm2* (-80.*BI2/ (27.*ajk*AJ*rob2) +
4.* (-1+a) *a2m*aj2am/ajk
RETURN
END
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