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 ABSTRACT: The present study addresses an application of the Mooney-Rivlin and Blatz-Ko material models in stability analysis of shell 

structures. These models are suitable for large deformations as well as finite rotations. The constitutive relations are implemented in the 

finite element software ABAQUS/Standard 6.14. To this end, UHYPER user subroutine is employed, which is dedicated for isotropic 

models. The procedure allows to solve a boundary value problem involving either shell or spatial finite elements. Solutions of presented 

exemplary problems are obtained on the basis of the Riks algorithm. In order to compare results, 3D and 2D finite elements models for 

each one are considered. Moreover, calculations are performed in the case of widely used “standard nonlinear analysis”, which  is not 

consistent with a formulation based on large strains hyperelasticity. 
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1. INTRODUCTION 

The present study addresses an application of the theory of 

hyperelasticity (Ref.1, 2) and finite element software ABAQUS/ 

Standard 6.14 (Ref. 3, 4) in stability analysis of shell structures (Ref. 5-

8). Three constitutive models of isotropic incompressible (model MR, 

Ref. 2) and compressible nonlinear elastic materials (model NL (Ref. 2) 

and model BK (Ref. 9)) are used (Ref. 1, 2). MR and NL models are 

available in ABAQUS’s material models library (Ref. 3,4). One of the 

objective of this paper is the numerical implementation of the BK model 

in ABAQUS/Standard 6.14 finite element program (Ref. 3,4). The 

program has interfaces that allow the user to implement their own 

material models. In the special case of the hyperelastic isotropic 

materials it is required only to write a Fortran code of the stored energy 

function with its derivatives with respect to the strain invariants in the 

form of UHYPER subroutine. 

2. LARGE STRAINS HYPERELASTICITY

An elastic material is called hyperelastic, cf. (Ref. 1), if there exists a 

stored energy function ( ) ( ), ,dim 9W Lin Lin+ + =F F , such that 

( )W


=

F

F
S , (1) 

where S  is the first Piola-Kirchhoff stress tensor and F defines a 

“deformation gradient” as ( , ) /t=  F X X . The function 

( , )t X defines an actual configuration of the body with respect to an 

initial one, i.e. ( ),t= Xx . Since det 0J = F , the mapping   is

oriented-preserving and locally invertible. The polar decomposition 

states = =F RU VR , which means that any F  can be multiplicatively 

decomposed into a rotation tensor ( )30SR  (Ref. 1) and so called the 

right T= =U F F C or the left T= =V FF B  stretch tensor 

(Ref. 1), ( ), ,dim 6Sym Sym+ + =U V .  

In order to avoid interpenetration of matter, it is necessary to put some 

restrictions on ( )W F , see [1,2]: 

( ) as 0 , ( ) asW J W
+

→ + → → + → +F F F . (2) 

We make the assumption that stored-energy function is isotropic, i.e. 

1 2 3
( ) ( ) ( ) ( , , )W W W W I I I= = =F C B ,    (3) 

where 1 tr trI = =C B , 2 trcof trcofI = =C B  and 2

3I J= are the 

invariants of each of the left and right Cauchy-Green deformation 

tensors C and B  (Ref. 1). Then, there exists a solution for a wide class 

of boundary values problems associated with hyperelastic model when 

W  has the form ( )( ) , cof , detW =F F F FW  for some convex W .

Such functions are said to be polyconvex, cf. (Ref. 1). We emphasize 

that , cof , detF F F are connected with the deformation of lines, surface 

and volume of the body, respectively.  

In the case of incompressibility, i.e. det 1=F , ( )W F   is polyconvex if 

there exists an extension of the function to convex one ( ),cofF FW

with respect to F and cof F , cf. (Ref. 1),  such that ( ) ( ),cofW =F F FW

( )1/3
J

−
=F F .

Since S  is non-symmetric, it is convenient to introduce the second 

Piola-Kirchhoff stress tensor 
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The relationship between the Cauchy stress tensor σ , the first and 

second Piola-Kirchhoff ones, namely 
T T

J = =σ SF FTF , cf. (Ref. 1, 

2), implies a constitutive relation in the spatial description such that 
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The Kirchhoff stress tensor J=τ σ  (Ref. 2, 6) is work conjugated to 

the symmetric rate of deformation tensor 
-1

sym( )=D FF  with respect 

to the initial volume so that (Ref. 1) 

W J=  =  =  = σ D τ D S F T E , (6) 

where ( ) / 2= −E C I denotes the Lagrangian strain tensor.

In order to implement a hyperelastic material model using UMAT (Ref. 

3, 4), corresponding constructive equations needs to define in a rate 

form. To do so, it is convenient to define a symmetric fourth-order 

tensor as 

( ) ( )2

4
TT
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E

E E C C
C  ,  (7) 

which is known as the material (Lagrangian) elasticity tensor, cf. (Ref. 

6). It is conjugated to the second Piola-Kirchhoff stress tensor 

as .=T EC . Since we are interested in a spatial description, the push 

forward is applied to give the Eulerian elasticity tensor (Ref. 6). Finally, 

the Zaremba- Jaumann rate of the Kirchhoff stress is given by (Ref. 6) 

( )
o

ˆT= + + =  +  + =τ Dτ FTF τD I τ τ I .D .DC C .   (8) 

3. MATERIAL MODELS

3.1 Constitutive relations 

In the case of ”standard nonlinear analysis” of elastic structures (option 

NLGEOM) in the finite element software ABAQUS/Standard (Ref. 3,4) 

the following constitutive relationships is used (model NL): 

( )ln 2 lnJ = +σ I V ,        (9) 

where   and   are Lamé elastic constants. It is worth noting that the 

NL model does not describe hyperelastic behavior of materials which 

leads to unrealistic results of numerical simulations in the construction 

areas where significant shear occurs (Ref. 2). Therefore, two 

hyperelastic models are used in this work. In the case of compressible 

materials, the model Blatz-Ko (BL) (Ref. 9) is used, whereas for 

incompressible materials, the Mooney-Rivlin (MR) (Ref. 1, 2) model is 

used. 

The stored energy function of BL model is defined by 
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where ,
1 2

c a
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−

and ( 0,1b .

If 1J = , then from Eq. (10) the well know Mooney-Rivlin energy 

function is recovered, cf. (Ref. 2). MR and NL models are available in 

ABAQUS’s material models library.  

3.2 UHYPER user subroutine 

The ABAQUS /Standard FEM software offers possibilities to implement 

our own material model, see Ref. 4, 10, 11.  

Fig. 1 Components of the Cauchy stress tensor – BK model ( 0.3 = ) 

Fig. 2 Components of the Cauchy stress tensor – BK model ( 0.49 = ) 

One way is to employ user subroutine UHYPER, which can be used to 

define an isotropic model. It requires that the stored-energy function and 

its derivatives are defined with respect to the invariants of the form 

( ) ( )

( )

ˆ , , ,
1

1 2tr , tr , det ,
1 2 12

W W U I I J

I I I J

=

= = − =

B

B B F

   (11) 

with 
T

=B FF . 

The implementation of the Blatz-Ko (BK) model is verified in simple 

tests with homogeneous deformations using 3D and 2D elements, as 

well. The results are compared with the values obtained on the basis of 

analytical formulas. Plots of the Cauchy stress tensor components and 

corresponding results obtained on the basis of the UHYPER subroutine 

in the case of uniaxial deformation are presented in Fig.1 and Fig.2  

4. EXAMPLES

As an exemplary boundary value problem a thin-walled circular tube 

with characteristic dimensions: height 10h r= , internal radius 

0.995wr r= , external radius 1.005zr r=  with 1[m]r =  under axial 

compression is considered. A circular cutout located in the central part 

of the element is introduced to induce relatively large deformations 

(Ref. 10, 12). In order to compare results, two numerical models are 

built using respectively: solid elements (3 elements by thickness) of type 

C3D8R and shell elements of type S4R with linear interpolation 

functions, see Ref. 4. The loading is realized by displacement control. 

Thus, following boundary conditions are applied: 1 2 3 0u u u= = =  at 

one end and 1 2 0u u= = , 3 2u r= −  at the other one according to the 

coordinate system as in Fig. 3.Solutions are obtained on the basis of the 

Riks algorithm known from efficiency of solving these types of 

problems. 
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Fig. 3 Finite element mesh and cross section of the tube 

The Fig. 4 presents plots of averaged stress   at the loaded end of the 

tube as a function of displacement for the incompressible Mooney-

Rivlin model. Final deformations of the body corresponding to marked 

points on equilibrium paths are shown in the figure. 

Fig. 4 Plots of averaged stress - MR model with 0.9 =

The main difference between these two results is a range of the 

displacement load obtained during the process. In the case of the shell 

model, computations are carried out up to 3 0.13u r− , while for the 

solid model the extreme displacement value is 3 0.04 .u r −  As 

expected the second one occurs stiffer. Even though hybrid formulation 

with reduced integration is applied, a volumetric locking evidently 

appears, cf. (Ref. 1-3).  In both cases, the local form of buckling is 

observed, followed by a very rapid reduction of the stiffness of the tube. 

Values of parameters 0.3, 0.9 = = are more accurate for models of 

metallic materials. In the case, numerical tasks are significantly worse 

posed and solver fails after reaching critical point, see Fig.6 and 8. 

Fig. 5 Plots of averaged stress - NL model with 0.49, 0.9 = =  

Fig. 6 Plots of averaged stress - BK model with 0.3, 0.9 = =  

Similarly to the MR, in the case of BK and NL compressible models 

values of critical stresses are higher for solid elements. Difference of 

these values, see Fig. 5, for NL model is unacceptable. It shows that the 

solution is very sensitive to values of initial parameters of the Riks 

procedure. The model is not consistent with a formulation based on 

large strains hyperelasticity and certainly should not be used in this 

context. 

Fig. 7 Comparison of NL, BK and MR materials – shell elements 

The NL and BK models with 0.49, 0.9 = =  represents an almost 

incompressible material. As shown in Fig. 7, obtained values of critical 

stresses are very similar in the case of shell elements. Ranges of the 

displacement load do not differ significantly for NL and MR models. In 

all cases, the local form of buckling is observed, followed by a very 

rapid reduction of the stiffness of the tube. Final deformations are 

shown in the Fig. 9-11 for these three cases. 

Fig. 8 Comparison of NL and BK materials – shell elements, 0.49 =
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Fig. 9 Final configuration of the tube – NL material – shell 

elements, 0.49, 0.9 = =  

Fig. 10 Final configuration of the tube – BK material – shell elements, 

0.49, 0.9 = =  

Fig. 11 Final configuration of the tube – MR material – shell elements, 

0.9 =

5. CONCLUSIONS 

Briefly presented results of application of the Mooney-Rivlin and Blatz-

Ko material models in simple stability problem show that numerical 

condition of the task is highly sensitive to value of the Poisson’s ratio. 

Ranges of obtained displacements in tasks with 0.49 =  are 

significantly smaller then these obtained with 0.3 =  for both NL and 

BK models. Thus, in the second case practically no results are obtained 

for a post-critical behavior. On the other hand, an influence of a finite 

element mesh quality on the solution is not investigated in the paper. 

Due to significant local deformations, a minimization of error related to 

the mesh would probably lead to performance a greater range of the 

displacement load. Special consideration should be given to finite 

elements type though. Results in a post-critical range vary significantly, 

especially for the NL model. Difference of critical stresses values is 

unacceptable. It shows that the solution is very sensitive to values of 

initial parameters of the Riks procedure in the case. The model is not 

consistent with a formulation based on large strains hyperelasticity and 

certainly should not be used to analyse post-critical behaviour. 
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APPENDIX 

UHYPER user subroutine  for the Blatz-Ko model, cf. (Ref. 11) (the 

subroutine is updated according to requirements of ABAQUS ver. 6.14). 
SUBROUTINE UHYPER(BI1,BI2,AJ,U,UI1,UI2,UI3,TEMP, 
NOEL,CMNAME,INCMPFLAG,NUMSTATEV,STATEV,NUMFIELD,FIELDV, 
FIELDVINC,NUMPROPS,PROPS)

 INCLUDE ’ABA_PARAM.INC’ 
 CHARACTER*80 CMNAME 
 DIMENSION UI1(3),UI2(6),UI3(6) 
 PARAMETER (ZERO=0.0D0) 

C  general form of compressible Blatz-Ko material  
 c=1.E06 
 a=1./4. 
 b=1./2. 
 cb  =c*b 
 cb2 =cb/2. 
 cbm =(1. –b)*c 
 cbm2=cbm/2 
 rob1 =AJ**0.3333333333333333 
 rob2 = rob1*rob1 
 rob3 = rob2*rob2 
 rob4 = rob3*rob1 
 rob5 = rob3*rob3 
 rob39= rob3*9. 
 ar   = 2.*a 
 a2m  = -1. +ar 
 a2   =  1. +ar 
 aj2a   = AJ**ar 
 aj2am  = aj2a/AJ 
 ajm2a  = 1./aj2a 

 ajm2am = ajm2a/AJ 
 ajk    = AJ*AJ 

C 
U=cb2*(-3. + rob2*BI1 + (-1. + ajm2a)/a)- cbm2*(-3. 
+BI2/rob2 + (-1. + aj2a)/a) 

C 
 UI1(1)=rob2*cb2 
 UI1(2)=cbm2/rob2 
 UI1(3)=2.*(cb2*BI1/rob1-2.*cb*ajm2am- 

       cbm2*BI2/rob4+2.*cbm*aj2am)/3. 
 UI2(1)=ZERO 
 UI2(2)=ZERO 
 UI2(5)=cb/(3.*rob1) 
 UI2(6)=-cbm/(3.*rob4) 

 UI3(1)=ZERO 
 UI3(2)=ZERO 

 UI2(3)=cbm2*(10.*BI2/(9.*rob5)+ 
 +2.*a2m*aj2am/AJ) + 
 cb2*(-2.*BI1/rob39+2.*a2*ajm2am/AJ) 

 UI2(4)=ZERO 
 UI3(3)=ZERO 
 UI3(4)=-cb/rob39 
 UI3(5)=5.*cbm/(rob39*rob3) 
 UI3(6)=cb2*(8.*BI1/(27.*rob3*AJ)- 

 4.*(1+a)*a2*ajm2am/ajk)+ 
 cbm2*(-80.*BI2/(27.*ajk*AJ*rob2)+ 
 4.*(-1+a)*a2m*aj2am/ajk) 

 RETURN 

 END 


